Buscar

domingo, 7 de diciembre de 2014

¿CÓMO INSTALAR UNA RED DE ÁREA LOCAL?

Cuando tiene varios equipos, puede ser conveniente conectarlos entre sí para crear una red de área local (LAN). A diferencia de lo que la gente cree, el costo por configurar una red con estas características es muy reducido.
Las siguientes son algunas de las ventajas que brinda una LAN:
  • Transferencia de archivos;
  • Recursos compartidos (conexión a Internet, impresoras, discos compartidos, etc.);
  • Movilidad (en el caso de una red inalámbrica);
  • Diálogo interactivo (principalmente cuando los equipos están conectados en forma remota);
  • Juegos en red.

Dos tipos de red de área local

Existen dos clases principales de arquitectura de red local:
  • Las redes conectadas, basadas en la tecnología Ethernet, que representan a la mayoría de las conexiones locales. Muchas veces se las denomina redes RJ45 ya que, por lo general, las redes Ethernet usan cables RJ45;
  • Las redes inalámbricas, que generalmente usan la tecnología WiFi, correponden a este tipo.

Hardware indispensable

Para crear una red de área local RJ45 en Windows, necesitará:
  • Varios equipos con el sistema operativo Windows instalado (es posible tener dos equipos con diferentes versiones de Windows en la misma red);
  • Tarjetas Ethernet conectadas a un puerto ISA o PCI (con un conector RJ45) o integradas a la placa madre. Asegúrese de que los diodos de la parte posterior de la tarjeta de red, si corresponde, se enciendan cuando el equipo esté encendido y de que el cable esté conectado. También existen adaptadores de red para puertos USB, especialmente en el caso de los adaptadores de red inalámbrica;
  • Los cables RJ45 en el caso de las redes conectadas;
  • Un hub, dispositivo al que se pueden conectar los cables RJ45 desde diferentes equipos de la red, que no son costosos (un valor aproximado de €50), un conmutador o, como alternativa, un cable cruzado, si desea conectar sólo dos equipos.

Arquitectura de red

Para crear una red de área local RJ45, se recomienda que adopte una estructura conocida como configuración "en estrella": los equipos se conectan al hub mediante el cable RJ45. Un hub es un dispositivo que transfiere datos de un equipo a otro. Su elección se debe realizar en función de la cantidad de equipos conectados de modo que haya suficientes enchufes (denominados "puertos") en el hub.
En el caso de que se trate de una red extensa o una con requisitos de ancho de banda considerables, un conmutador es una opción más conveniente, ya que permite distribuir paquetes sólo a los equipos relevantes, mientras que un hub los envía en forma sistemática a todos los equipos conectados.
Así es la estructura de este tipo de red:
Si desea conectar únicamente dos equipos, puede obviar el uso del hub conectando directamente ambos equipos con un cable cruzado RJ45.

Arquitecturas que no deberían usarse

Aunque al principio parezcan adecuadas, las siguientes estructuras no brindan resultados favorables, a menos que los equipos tengan varias interfaces de red (varias tarjetas) y se hayan utilizado cables cruzados:


Red RJ45 incorrecta

WINDOWS SERVER 2008

Windows Server 2008


Windows Server 2008
Parte de la familia Microsoft Windows Server
Windows logo - 2002–2012 (Multicolored).svg
Desarrollador
Microsoft
Página de Windows 2008
Información general
Modelo de desarrolloSoftware propietario; Shared Source
Lanzamiento inicial4 de febrero de 2008 ([[1] info])
Última versión estable6.0 Service Pack 2 (SP2; Compilación 6002) ([ info])
30 de abril de 2009; hace 5 años (2009-04-30)
NúcleoNT 6.0
Tipo de núcleoHíbrido
Plataformas soportadasIA-32, x86-64, IA-64
Método de actualizaciónWindows Update
LicenciaMicrosoft CLUF (EULA)
IdiomasMultilingüe
En españolSí 
Predecesor:Windows Server 2003 (2003)
Sucesor:Windows Server 2008 R2 (2009)
Soporte técnico
Período de soporte estándar hasta el 13 de enero de 2015. Después, período de soporte extendido hasta el 14 de enero de 2020.
Windows Server 2008 (algunas veces abreviado como "Win2K8" o "W2K8") es el nombre de un sistema operativo de Microsoft diseñado para servidores.
Es el sucesor de Windows Server 2003, distribuido al público casi cinco años después. Al igual que Windows Vista, Windows Server 2008 se basa en el núcleo Windows NT 6.0 Service Pack 1. Entre las mejoras de esta edición, se destacan nuevas funcionalidades para el Active Directory, nuevas prestaciones de virtualización y administración de sistemas, la inclusión de IIS 7.5 y el soporte para más de 256 procesadores. Hay siete ediciones diferentes: Foundation, Standard, Enterprise, Datacenter, Web Server, HPC Server y para Procesadores Itanium.



CONFIGURACIÒN DE UNA LAN EN WINDOWS

Las redes en general, consisten en "compartir recursos", y uno de sus objetivos es hacer que todos los programas, datos y equipo estén disponibles para cualquier equipo o usuario de la red que así lo solicite, sin importar la localización física del recurso y del usuario. En otras palabras, el hecho de que el usuario se encuentre a 1000 Km. de distancia de los datos, no debe evitar que este los pueda utilizar como si fueran originados localmente.
Configurar una red LAN bajo Windows XP es una tarea de las más sencillas que se nos pueden presentar para configurar en un ordenador, dado que este tipo de redes cableadas no precisan de muchos conocimientos a la hora de configurarlas, además si no se tienen amplios conocimientos informáticos existe un asistente proporcionado por el sistema operativo que nos facilitará mucho la tarea, aunque para configurarla de verdad nada como hacerlo manualmente.

Requisitos para instalar y configurar una red Lan

  • Dos ordenadores o más, con una tarjeta de red cada uno
  • Los drivers de dichas tarjetas instalados correctamente sin que muestren anomalías en la parte de administración de dispositivos de Windows:
  • Si la conexión va a unir varios PC’s necesitaremos un Hub o Switch y 2 cables de red, muchos de los routers actuales tienen esta función, así que podremos conectarlos a él sin problemas.
Una vez dispongamos de todo esto, y hayamos enchufado nuestros ordenadores al switch o router, procederemos a la configuración de la red de área local en Windows XP.

Configuración de una red LAN bajo Windows XP

Abriremos la siguiente ruta: Inicio/Configuración/Conexiones de Red
Una vez dentro, seleccionamos con el botón derecho del ratón el icono de nuestro dispositivo de red y abriremos sus propiedades.
En la pantalla de propiedades abriremos las propiedades del protocolo TCP/IP y obtendremos una pantalla como esta:
Las redes se definen por su máscara y por su dirección de red. La máscara de subred establece el número de ordenadores que integran la red y la dirección de red establece la dirección base desde la cual empezamos a contar.
El número de ordenadores que abarca una máscara de subred se calcula restando cada segmento de 255, así si tenemos una máscara de subred 255.255.255.0 significa que nuestra red posee 255 direcciones posibles y si tenemos una máscara 255.255.255.224 poseemos 32 direcciones posibles. Esto significaría que si partimos de una dirección de red de 192.168.0.0 y una máscara 255.255.255.224, las direcciones estarían comprendidas entre 192.168.0.1 y 192.168.0.32.
Una vez configurada nuestra IP y nuestra máscara de Red, deberemos saber si nuestra red tiene acceso a Internet, y si es así, en el apartado "Puerta de enlace predeterminada" indicaríamos la dirección por la que nuestro ordenador tiene acceso a una red externa (Internet). Debe ser la IP del Router, normalmente y por defecto suele ser: 192.168.1.1 ó 192.168.0.1 pero puede ser cualquiera, dependiendo de la dirección IP asignada al Router.

Finalizar la configuración

Después de tener configurado en nuestro ordenador:
  • Dirección IP
  • Máscara de subred
  • Puerta de enlace predeterminada
Configuraremos nuestro nombre de equipo y el grupo de red al que pertenece.
Realizando este sencillo tutorial, deberíamos reiniciar ambos PC's y conseguir poder compartir recursos entre ambos. Hay muchos aspectos que no se han detallado en este Artículo, algunos como la configuración de Firewall , aplicaciones Antivirus u otros como compartir recursos de forma segura, con permisos por carpetas y a nivel de usuario..., crear unidades de Red a los recursos compartidos o cómo gestionar de manera eficiente una red.
- See more at: http://www.alebentelecom.es/servicios-informaticos/faqs/configurar-una-red-de-area-local-lan-en-windows-xp#sthash.SnbLn7Ts.dpuf

CABLEADO ESTRUCTURADO

Cableado estructurado
Definición
Hasta hace unos años para cablear un edificio se usaban distintos sistemas independientes unos de otros. Esto llevaba a situaciones como el tener una red bifilar para voz (telefonía normalmente), otra distinta para megafonía, otra de conexión entre ordenadores, etc. Con esta situación se dificulta mucho el mantenimiento y las posibles ampliaciones del sistema.
Un sistema de cableado estructurado es una red de cables y conectores en número, calidad y flexibilidad de disposición suficientes que nos permita unir dos puntos cualesquiera dentro del edificio para cualquier tipo de red (voz, datos o imágenes). Consiste en usar un solo tipo de cable para todos los servicios que se quieran prestar y centralizarlo para facilitar su administración y mantenimiento.
El cableado estructurado recibe nombres distintos para cada tipo de aplicación, aunque popularmente se generaliza y se le conoce con el nombre de P.D.S. Los nombres reales son:
P.D.S. Sistemas de Distribución de Locales
I.D.S. Sistemas de Distribución de Industria
I.B.S.Control de Seguridad y Servicios
Al hablar de sistemas de cableado implícitamente se entiende cableados de baja corriente (telefonía, vídeo e informáticas), aunque la actitud sistemática que observamos ante este tipo de cableado, también se debería de aplicarse al conocido como cableado de alta corriente (sistema de 220v). Como se verá más adelante, es importante integrar en el diseño de un edificio ambos cableados para evitar interferencias entre ellos.
Beneficios
El sistema de cableado estructurado nos va permitir hacer convivir muchos servicios en nuestra red (voz, datos, vídeo, etc.) con la misma instalación, independientemente de los equipos y productos que se utilicen.
Se facilita y agiliza mucho las labores de mantenimiento.
Es fácilmente ampliable.
El sistema es seguro tanto a nivel de datos como a nivel de seguridad personal.
Una de las ventajas básicas de estos sistemas es que se encuentran regulados mediante estándares, lo que garantiza a los usuarios su disposición para las aplicaciones existentes, independientemente del fabricante de las mismas, siendo soluciones abiertas, fiables y muy seguras. Fundamentalmente la norma TIA/EIA-568A define entre otras cosas las normas de diseño de los sistemas de cableado, su topología, las distancias, tipo de cables, los conectores, etc.
Al tratarse de un mismo tipo de cable, se instala todo sobre el mismo trazado.
El tipo de cable usado es de tal calidad que permite la transmisión de altas velocidades para redes.
No hace falta una nueva instalación para efectuar un traslado de equipo.
Elementos que intervienen
Ya que el sistema de cableado recibe el nombre de estructurado, sería conveniente conocer su estructura. Al conjunto de todo el cableado de un edificio se le conoce con el nombre de SISTEMA y cada parte en la que se divide se da el nombre de SUBSISTEMA:
􀂃 Área de trabajo
􀂃 Horizontal
􀂃 Vertical
􀂃 Campus. Entre edificios diferentes.
-Cableado- 1
Estándares
Todo el cableado estructurado está regulado por estándares internacionales que se encargan de establecer las normas comunes que deben cumplir todos las instalaciones de este tipo. Las reglas y normas comentadas en secciones anteriores están sujetas a estas normas internacionales.
Existen tres estándares, ISO/IEC-IS11801 que es el estándar internacional, EN-50173 que es la norma europea y ANSI/EIA/TIA-568A que es la norma de EE.UU. Éste último es el más extendido aunque entre todas ellas no existen diferencias demasiado significativas.
Todas ellas se han diseñado con el objeto de proporcionar las siguientes utilidades y funciones:
Un sistema de cableado genérico de comunicaciones para edificios comerciales.
Medios, topología, puntos de terminación y conexión, así como administración, bien definidos.
Un soporte para entornos multiproveedor multiprotocolo.
Instrucciones para el diseño de productos de comunicaciones para empresas comerciales.
Capacidad de planificación e instalación del cableado de comunicaciones para un edificio sin otro conocimiento previo que los productos que van a conectarse.
Área de trabajo
Se define como la zona donde están los distintos puestos de trabajo de la red. En cada uno de ellos habrá una roseta de conexión que permita conectar el dispositivo o dispositivos que se quieran integrar en la red.
Rosetas
El área de trabajo comprende todo lo que se conecta a partir de la roseta de conexión hasta los propios dispositivos a conectar (ordenadores e impresoras fundamentalmente). Están también incluidos cualquier filtro, adaptador, etc. , que se necesite. Éstos irán siempre conectados en el exterior de la roseta. Si el cable se utiliza para compartir voz, datos u otros servicios, cada uno de ellos deberá de tener un conector diferente en la propia roseta de conexión.
Al cable que va desde la roseta hasta el dispositivo a conectar se le llama latiguillo o patch cord y no puede superar los 3 metros de longitud según norma.
Subsistema Horizontal
Desde la roseta de cada uno de las áreas de trabajo irá un cable a un lugar común de centralización llamado panel de parcheo.
Panel de Parcheo
El panel de parcheo es donde se centraliza todo el cableado del edificio. Es el lugar al que llegan los cables procedentes de cada una de las dependencias donde se ha instalado un punto de la red. Cada roseta colocada en el edificio tendrá al otro extremo de su cable una conexión al panel de parcheo. De esta forma se le podrá dar o quitar servicio a una determinada dependencia simplemente con proporcionarle o no señal en este panel.
-Cableado- 2
Se conoce con el nombre de cableado horizontal a los cables usados para unir cada área de trabajo con el panel de parcheo.
Subsistema Horizontal
Todo el cableado horizontal deberá ir canalizado por conducciones adecuadas. En la mayoría de los casos, y en el nuestro también, se eligen para esta función las llamadas canaletas que nos permiten de una forma flexible trazar los recorridos adecuados desde el área de trabajo hasta el panel de parcheo.
Las canaletas van desde el panel de parcheo hasta las rosetas de cada uno de los puestos de la red.
Se podría dividir en dos tipos dependiendo del uso que se le dé:
􀂃 Las de distribución. Recorren las distintas zonas del edificio y por ellas van los cables de todas las rosetas.
􀂃 Las finales. Llevan tan solo los cables de cada una de las rosetas.
Es muy conveniente que el panel de parcheo junto con los dispositivos de interconexión centralizada (concentradores, latiguillos, router, fuentes de alimentación, etc.) estén encerrados un armario de comunicaciones (rack). De esta forma se aíslan del exterior y por lo tanto de su manipulación "accidental". También facilita el mantenimiento al tenerlo todo en un mismo lugar.
Como se puede observar la topología usada es en estrella teniendo en cuenta que cada mecanismo de conexión en la roseta está conectado a su propio mecanismo de conexión en el panel de parcheo del armario de comunicaciones.
El subsistema horizontal incluye los siguiente elementos:
􀂃 El cable propiamente dicho
􀂃 La roseta de conexión del área de trabajo
􀂃 El mecanismo de conexión en el panel de parcheo del armario de comunicaciones.
􀂃 Los cables de parcheo o latiguillos (Patch-cords) en el armario de comunicaciones.
􀂃 Las canaletas.
Cada cable horizontal no podrá superar los 90 metros. Además los cables para el parcheo en el armario de comunicaciones no podrán tener más de 6 metros y no podrá superar los 3 metros el cable de conexión del puesto de trabajo a la roseta.
-Cableado- 3
Subsistema Vertical
El cableado vertical (o de "backbone") es el que interconecta los distintos armarios de comunicaciones. Éstos pueden estar situados en plantas o habitaciones distintas de un mismo edificio o incluso en edificios colindantes. En el cableado vertical es usual utilizar fibra óptica o cable UTP, aunque el algunos casos se puede usar cable coaxial.
La topología que se usa es en estrella existiendo un panel de distribución central al que se conectan los paneles de distribución horizontal. Entre ellos puede existir un panel intermedio, pero sólo uno.
En el cableado vertical están incluidos los cables del "backbone", los mecanismos en los paneles principales e intermedios, los latiguillos usados para el parcheo, los mecanismos que terminan el cableado vertical en los armarios de distribución horizontal.
Subsistema de Campus
Lo forman los elementos de interconexión entre un grupo de edificios que posean una infraestructura común (fibras ópticas, cables de pares, sistemas de radioenlace, etc.)
Recomendaciones (al instalar el cable)
􀂃 Que pase al menos a 2 metros de los ascensores.
􀂃 A 30 cm de los fluorescentes.
􀂃 A 30 cm de los cables de corriente. En caso de cruzarse, hay que evitar que vayan en paralelo. Si no se puede evitar el paralelismo, debería haber una separación mínima de 2 cm en recorridos de menos de 2,5 metros y de 4 cm en recorridos de menos de 10 metros.
􀂃 Evitar altas temperaturas y zonas húmedas.
􀂃 Guardar 1,2 metros de ventiladores, aire acondicionado, etc.
􀂃 Buscar recorridos comunes para las canaletas.
􀂃 Ocupación máximo de la canaleta menor del 60%.
􀂃 Guardar un orden estético.
􀂃 Tener en cuenta el acceso. Que se pueda trabajar con comodidad pero que haya un sitio seguro de acceso, para que no estén al alcance de cualquiera.
Nomenclaturas
P.D.S. : Sistemas de distribución de locales
I.D.S. : Sistemas de distribución de industrias
I.B.S. : Control de seguridad y servicios
-Cableado- 4
Normativa para la conexión de los cables
El cable UTP
Formado por hilo de cobre de 5 mm. Soporta temperaturas entre –10 y 60 ºC.
Los 4 pares son:
Par uno: blanco-azul y azul
Par dos: blanco-naranja y naranja
Par tres: blanco-verde y verde
Par cuatro: blanco-marrón y marrón
Conector RJ-45
En conexión paralela la disposición de los cables es igual en los dos extremos RJ-45. En la conexión cruzada cambian 1 y 3 por 3 y 6 (ver ejemplo)
NORMA T568/A
Pines: 1 y 2 recepción
Pines: 3 y 6 transmisión
El resto no se usan
NORMA T568/B
Pines: 1 y 2 recepción
Pines: 3 y 6 transmisión
El resto no se usan
-Cableado- 5
Normas: T568A/T568B
El cableado estructurado para redes de computadoras nombran dos tipos de normas o configuraciones a seguir, estas son: La T568A y la T568B. La diferencia entre ellas es el orden de los colores de los pares a seguir para el conector RJ45.
A continuacion se muestra el orden de cada norma
Norma T568A
Norma T568B
Blanco Verde Verde Blanco Naranja Azul Blanco Azul Naranja Blanco Marron Marron
Blanco Naranja Naranja Blanco Verde Azul Blanco Azul Verde Blanco Marron Marron
-Cableado- 6
Cable Paralelo y Cable Cruzado
Las redes de computadoras no utilizan los 4 pares (8 cables) en su totalidad, utilizan 4 cables. 2 para transmitir y 2 para recibir.
1 -----> TX + 2 -----> TX - 3 -----> RX + 4 -----> N/A 5 -----> N/A 6 -----> RX - 7 -----> N/A 8 -----> N/A
Un cable recto es aquel que conserve una misma norma en ambos extremos.
Un cable cruzado es aquel donde en los extremos la configuracion es diferente. El cable cruzado, como su nombre lo dice, cruza las terminales de transmision de un lado para que llegue a recepcion del otro, y la recepcion del origen a transmision del final.
Categorías de los cables
CATEGORÍA
ANCHO DE BANDA
DISTANCIA MAX.
3
10 MHz
100 m
4
20 MHz
100 m
5
100 MHz
100 m
100 Mbps
5e
200 MHz
100 m
1 Gbps
-Cableado- 7
Cómo construir un cable cruzado UTP de red LAN
Lo más práctico es adquirir el cable cruzado en una tienda de informática o de electrónica, pero hay ocasiones en que, bien por ser necesaria una longitud mayor, o por tener que hacer el tendido del cable dentro de canalizaciones y no poder utilizar rosetas en pared, es necesario insertar los conectores RJ45 en el cable UTP Cat5.
A continuación podéis ver cómo podemos fabricar este cable cruzado en ambiente doméstico ( la herramienta de crimpar o crimpador que utilizo en este reportaje es una herramienta profesional con útil intercambiable -que sirve también para RJ11- y que conservo desde hace muchos años: las que se adquieren normalmente en el comercio son algo más sencillas ).
En realidad, para la conexión en red LAN Ethernet 10bT o 100bTX solamente se usan cuatro conexiones, las nº 1, 2, 3 y 6, aunque se suelen equipar todos los contactos. Para conexiones 100bT4 y 1000bT habría que cruzar también los pares 4-5 y 7-8, tal como se indica al final de este reportaje. En estos casos, el cable aquí indicado no valdría.
Glosario:
- Cable UTP ( Unshielded twisted Pair ): el que se usa aquí tiene cuatro pares trenzados, retorcidos o enrollados, sin pantalla o blindaje. - Cat 5: nivel de prestaciones eléctricas: éste debe servir para LAN Ethernet de 10 MHz y 100 MHz., con las respectivas limitaciones de la especificación (10bT o 10baseT). - Cable cruzado: une el par de hilos o conductores de transmisión de una tarjeta con el par de recepción de la otra, y viceversa.
Esto es lo que vamos a usar para hacer el cable cruzado: tijeras de electricista, herramienta de crimpar, cable UTP Cat5 de cuatro pares ... ... y dos conectores RJ-45 (vemos la numeración de las conexiones, de 1 a 8) ... ... esta es una foto de uno de los 8 contactos del conector RJ45, con las cuchillas de conexión a la izquierda y el contacto a la derecha ... ... detalle del zig-zag de la cuchillas -arriba- por ambos lados (esto no hay que desmontarlo, claro, sólo está desmontado para que lo veáis mejor). En esta foto podéis ver el conector por dentro con los ocho carriles correspondientes a los ocho conductores ... ... aquí he apretado 5 cuchillas para ver cómo conectarán con los cables al crimpar. Contacto nº8 señalado por flecha morada, y carril nº2 con un círculo verde. Este conector ya no lo usaré. Foto del contacto-cuchilla nº1, tal como viene en el conector (los otros 7 están alineados detrás). Empiezo: con la punta de las tijeras, a unos 5-6 cm. del extremo, pellizco la funda, camisa o aislamiento externo del cable, todo alrededor ...
-Cableado- 8
... y cuando está debilitada, tiro y separo, dejando al descubierto ... ... los cuatro pares de cables trenzados. Voy a preparar el lado de conexión normal ... ... desenrollo los cables, poniendo mucha atención, hasta el borde de la camisa (una vuelta más), y los coloco así: 1-blanco pareja de naranja, 2-naranja, 3-blanco pareja de verde, 4-azul ... ... 5-pareja de azul, 6-verde, 7-blanco pareja de marrón, 8-marrón, y los sujeto con fuerza; ya no puedo dejar que cambien el orden hasta acabar la construcción del conector ... ... sin soltar los cables por abajo, para que ninguna conexión cambie de posición, estiro bien los cables ... ... poniéndolos totalmente paralelos. No puedo dejar que cambien de posición, y si tengo que parar aquí para hacer algo ... ... los dejo sujetos con una pinza u otro utillaje, para que no cambien de posición. En esta foto vemos que la distancia entre las flechas moradas es la longitud que tienen que tener los conductores individuales (longitud del carril), unos 12 mm. ... ... yo suelo cortar un poco más, unos 14-15 mm., porque al meter los cables dentro del conector la camisa se desplaza un poco ... ... los voy metiendo dentro del conector, sin aflojar la presión sobre el extremo de la camisa, vigilando que cada uno entre por su carril ... ... y después empujo desde un poco más atrás, hasta que los cables llegan a tope al final de los carriles, e inmediatamente ... ... sujetando el cable muy cerca del conector, apretando la camisa gris sobre los cables interiores, para que no se desplacen, meto el conector en la herramienta de crimpar ...
... a tope ... ... y cierro la herramienta, apretando fuertemente el mango. El conector ya está fijado al cable. Ahora compruebo que los cables siguen llegando hasta el final de los carriles (ver flecha morada), más allá de las cuchillas ... ... compruebo también por el otro lado: la flecha verde señala que la camisa gris está bien retenida por la uña de plástico transparente ...
-Cableado- 9
... hago otra comprobación por arriba: todos los cables llegan hasta el final, las cuchillas hacen conexión perfecta, atravesando el aislante. Ahora preparo los cables por el lado de la conexión cruzada: 1-blanco pareja de verde, 2-verde, 3-blanco pareja de naranja, 4-azul ... ... 5-blanco pareja de azul, 6-naranja, 7-blanco pareja de marrón, 8-marrón. Los corto alineados, sujetando el extremo ... ... también con una longitud de 14-15 mm. ... ... y repito las operaciones como con el otro conector. El cable está acabado Foto del conector RJ45 del cable cruzado del lado normal. Repaso de la numeración y conexión de cada cable. Foto del conector RJ45 del cable cruzado del lado cruzado. Repaso de la numeración y conexión de cada cable Foto de los dos conectores RJ-45 del cable cruzado. Ahora, si tengo un tester, para mayor seguridad, compruebo las conexiones (en este caso 0,5 ohmios, depende de la longitud del cable) ... ... 1 con 3 .. ... 2 con 6 ... ... 3 con 1 ... ... 4 con 4 ... ... 5 con 5 ... ... 6 con 2 ... ... 7 con 7 (sin foto), y 8 con 8. El cable se instaló después en conexión de dos PC en red LAN Ethernet y está funcionando.
-Cableado- 10
Posibles preguntas: - Pregunta: No tengo herramienta de crimpar ¿te parece razonable que crimpe a mano hilo a hilo presionando cada cuchilla con un destornillador plano finito cuya punta quepa hasta el fondo por las ranuras de la caja transparente del conector macho rj45? - Respuesta: Desgraciadamente NO. La operación de crimpar requiere herramienta especializada. Si crimpas a mano, el porcentaje de fallos que suele salir es muy alto (si eres capaz de hacer diez cables por este procedimiento y no falla ninguno durante dos años, yo diría que eres un joven superdotado). Te aconsejo que como alternativa utilices un adaptador o conector cruzado, o que uses rosetas y hagas el cruce en una de ellas. Es incluso preferible la chapuza de cortar el cable, hacer el cruce con empalmes de soldadura y aislar cada hilo a ser posible con tubo termorretráctil. - Pregunta: ¿qué tipo de cable tengo que usar para conectar el ordenador a un switch, hub, o router ADSL con función hub? - Respuesta: Un cable normal o directo. El cable normal o directo utp de red lan rj45 tiene los dos extremos iguales, como en esta foto de conexión directa de un cable utp a un conector RJ-45. El cable cruzado, que, insisto, tiene un solo extremo cruzado y el otro extremo directo solamente sirve para conectar dos ordenadores en red lan directamente el uno al otro sin ningún switch o hub por enmedio (o en aplicaciones profesionales, para conectar un equipo con otro, en el caso de que las conexiones "uplink" o "downlink" no se equipen cruzadas, lo que es muy frecuente. También puede ser necesario a nivel doméstico para conectar un switch o hub a un router ADSL, por ejemplo. En todos estos casos se debe consultar la documentación de los equipos). Ten en cuenta que para conectar 3 o más ordenadores en red necesitas un switch o hub, o que el router de ADSL tenga esta función con el número de conexiones RJ45 necesarias (un caso típico es el de un ordenador nuevo, uno viejo -que se usa normalmente para recibir el correo, para que los niños trasteen con antiguos juegos o emuladores, o para editar textos- y un ordenador portátil). Actualmente el mercado ha puesto ya el switch de 100 MHz. a un precio doméstico, y las tarjetas de red lan de 100 MHz. baratísimas. - Pregunta: He pensado que como en el futuro es posible que la conexión 100b-T4 reemplace a la 100b-TX, me voy a hacer el cable cruzado con los datos que indicas abajo, cruzando también los pares 4-5 y 7-8 ¿le ves algún inconveniente?. - Respuesta: Es difícil saber eso. Lo que sí tengo que reconocer es mi hostilidad a los cambios (tiendo a ser un poco mal pensado, quizás por la edad -nací en 1948-, e instintivamente pienso que los cambios están maquinados para sembrar confusión y sacarle dinero al usuario). Lo más probable es que te funcione bien, aunque si tienes la mala suerte de usar el cable en un equipo algo antiguo que use los pares 4-5 ó 7-8 para algún invento especial, pues te puedes volver tarumba. - Pregunta: ¿Me puedes decir qué diferencia hay entre los cables UTP, FTP y STP, y tu opinión sobre el uso de los cables FTP y/o STP en redes LAN Ethernet?. - Respuesta: UTP: Unshielded Twisted Pair: Cable de pares trenzados o retorcidos sin pantalla o blindaje. Es el más usado, y hasta la fecha, en entorno doméstico, casi el único, el tipo de 4 pares. Lo hay con hilos rígidos o flexibles. El trenzado está muy estudiado. Las categorías actuales más normales son Cat5 (que ya se está viendo bastante sustituída por la Cat5e), y Cat6, muy usada ya en entorno profesional y que se puede también encontrar en algunas tiendas (a mayor número, mejor respuesta en frecuencia, aunque cada cable y tipo de cada fabricante tiene sus datos técnicos específicos). FTP: Foiled Twisted Pair: Se suele llamar así a un cable como el UTP, pero con una pantalla o blindaje alrededor de todos los pares al mismo tiempo. Recomendado para ambientes con alto nivel de ruido eléctrico (centros de transformación cercanos, etc.). Usado casi exclusivamente en entorno profesional STP: Shielded Twisted Pair: Se suele llamar así a un cable como el FTP, pero con pantallas o blindajes individuales para cada par trenzado. Uso similar al FTP, con la diferencia de que este cable blinda unos pares
-Cableado- 11
con respecto a otros dentro del mismo cable. El conector tipo RJ45 para latiguillos FTP y STP también tiene apantallamiento. Algunos amigos han usado con éxito cables FTP y STP (e incluso UTP) para conectar el ordenador a la televisión: la impedancia característica de estos cables suele ser de 100 ohmios, no muy alejada de los 75 ohmios de video, y en algunos casos han hecho la conexión sin balunes (inductancias o transformadores de acoplamiento de impedancias) en ninguno de los dos extremos, con un resultado práctico que les ha parecido bueno.
OBSERVACIONES
- Las recomendaciones 100b-T4 y 1000b-T utilizan los pares 4-5 y 7-8 también cruzados, por lo que el cable aquí indicado no valdría. En estos casos, las conexiones de estos hilos serían: 4 al 7, 5 al 8, 7 al 4 y 8 al 5 (además de mantener la conexión cruzada básica de los hilos 1, 2, 3 y 6 aquí expuesta); el cable recomendado sería Cat5e o Cat6. Otros reportajes de este sitio web relacionados: - Conectar LAN y RDSI por un solo cable UTP de 4 pares
FUENTE: http://www.coloredhome.com/cable_cruzado/cable_cruzado0002.htm

Ethernet


  • Desarrollado por la compañía XERTOX y adoptado por la DEC (Digital Equipment Corporation), y la Intel, Ethernet fue uno de los primero estándares de bajo nivel. Actualmente es el estándar mas ampliamente usado.
  • Ethernet esta principalmente orientado para automatización de oficinas, procesamiento de datos distribuido, y acceso de terminal que requieran de una conexión económica a un medio de comunicación local transportando trafico a altas velocidades
  • Este protocolo esta basado sobre una topología bus de cable coaxial, usando CSMA/CD para acceso al medio y transmisión en banda base a 10 MBPS. Además de cable coaxial soporta pares trenzados. También es posible usar Fibra Optica haciendo uso de los adaptadores correspondientes.
  • Además de especificar el tipo de datos que pueden incluirse en un paquete y el tipo de cable que se puede usar para enviar esta información, el comité especifico también la máxima longitud de un solo cable (500 metros) y las normas en que podrían usarse repetidores para reforzar la señal en toda la red.
Funciones de la Arquitectura Ethernet
Encapsulacion de datos
  • Formación de la trama estableciendo la delimitación correspondiente
  • Direccionamiento del nodo fuente y destino
  • Detección de errores en el canal de transmisión
Manejo de Enlace
  • Asignación de canal
  • Resolución de contención, manejando colisiones
Codificación de los Datos
  • Generación y extracción del preámbulo para fines de sincronización
  • Codificación y decodificación de bits
Acceso al Canal
  • Transmisión / Recepción de los bits codificados.
  • Sensibilidad de portadora, indicando trafico sobre el canal
  • Detección de colisiones, indicando contención sobre el canal
Formato de Trama
  • En una red ethernet cada elemento del sistema tiene una dirección única de 48 bits, y la información es transmitida serialmente en grupos de bits denominados tramas. Las tramas incluyen los datos a ser enviados, la dirección de la estación que debe recibirlos y la dirección de la estación que los transmite
  • Cada interface ethernet monitorea el medio de transmisión antes de una transmisión para asegurar que no esté en uso y durante la transmisión para detectar cualquier interferencia.
  • En caso de alguna interferencia durante la transmisión, las tramas son enviadas nuevamente cuando el medio esté disponible. Para recibir los datos, cada estación reconoce su propia dirección y acepta las tramas con esa dirección mientras ignora las demás.
  • El tamaño de trama permitido sin incluir el preámbulo puede ser desde 64 a 1518 octetos. Las tramas fuera de este rango son consideradas invalidas.
Campos que Componen la Trama
El preámbulo Inicia o encabeza la trama con ocho octetos formando un patrón de 1010, que termina en 10101011. Este campo provee sincronización y marca el limite de trama.
Dirección destino Sigue al preámbulo o identifica la estación destino que debe recibir la trama, mediante seis octetos que pueden definir una dirección de nivel físico o múltiples direcciones, lo cual es determinado mediante el bit de menos significación del primer byte de este campo. Para una dirección de nivel físico este es puesto en 0 lógico, y la misma es única a través de toda la red ethernet. Una dirección múltiple puede ser dirigida a un grupo de estaciones o a todas las estaciones y tiene el bit de menos significación en 1 lógico. Para direccionar todas las estaciones de la red, todos los bits del campo de dirección destino se ponen en 1, lo cual ofrece la combinación FFFFFFFFFFFFH.
Dirección fuente Este campo sigue al anterior. Compuesto también por seis octetos, que identifican la estación que origina la trama.
Los campos de dirección son además subdivididos: Los primeros tres octetos son asignados a un fabricante, y los tres octetos siguientes son asignados por el fabricante. La tarjeta de red podría venir defectuosa, pero la dirección del nodo debe permanecer consistente. El chip de memoria ROM que contiene la dirección original puede ser removido de una tarjeta vieja para ser insertado en una nueva tarjeta, o la dirección puede ser puesta en un registro mediante el disco de diagnostico de la tarjeta de interfaces de red (NIC). Cualquiera que sea el método utilizado se deber ser cuidadoso para evitar alteración alguna en la administración de la red.
Tipo Este es un campo de dos octetos que siguen al campo de dirección fuente, y especifican el protocolo de alto nivel utilizado en el campo de datos. Algunos tipos serian 0800H para TCP/IP, y 0600H para XNS.
Campo de dato Contiene los datos de información y es el único que tiene una longitud de bytes variable que puede oscilar de un mínimo de 46 bytes a un máximo de 1500. El contenido de ese campo es completamente arbitrario y es determinado por el protocolo de alto nivel usado.
Frame Check Secuence Este viene a ser el ultimo campo de la trama, compuesto por 32 bits que son usados por la verificación de errores en la transmisión mediante el método CRC, considerando los campo de dirección tipo y de dato

Arcnet

La Red de computacion de recursos conectadas (ARCNET, Attached Resource Computing Network) es un sistema de red banda base, con paso de testigo (token) que ofrece topologias flexibles en estrella y bus a un precio bajo. Las velocidades de transmision son de 2.5 Mbits/seg. ARCNET usa un protocolo de paso de testigo en una topologia de red en bus con testigo, pero ARCNET en si misma no es una norma IEEE. En 1977, Datapoint desarrollo ARCNET y autorizo a otras compañias. En 1981, Standard Microsystems Corporation (SMC) desarrollo el primer controlador LAN en un solo chip basado en el protocolo de paso de testigo de ARCNET. En 1986 se introdujo una nueva tecnologia de configuracion de chip.
ARCNET tiene un bajo rendimiento, soporta longitudes de cables de hasta 2000 pies cuando se usan concentradores activos. Es adecuada para entrornos de oficina que usan aplicaciones basadas en texto y donde los usuarios no acceden frecuentemente al servidor de archivos. Las versiones mas nuevas de ARCNET soportan cable de fibra optica y de par-trenzado. Debido a que su esquema de cableado flexible permite de conexión largas y como se pueden tener configuraciones en estrella en la misma red de area local (LAN Local Area Network). ARCNET es una buena eleccion cuando la velocidad no es un factor determinante pero el precio si. Ademas, el cable es del mismo tipo del que se utiliza para la conexión de determinales IBM 3270 a computadoras centrales de IBM y puede que va este colocado en algunos edificios.
ARCNET proporciona una red rebusta que no es tan susceptible a fallos como Ethernet de cable coaxial si el cable se suelta o se desconecta. Esto se debe particularmente a su topologia y a su baja velocidad de transferencia. Si el cable que une una estacion de trabajo a un concentrador se desconecta o corta, solo dicha estacion de trabajo se va a abajo, no la red entera. El protocolo de paso de testigo requiere que cada transaccion sea reconocida, de modo no hay cambios virtuales de errores, aunque el rendimiento es mucho mas bajo que en otros esquemas de conexión de red.
ARCNET Plus, una version de 20 Mbits/seg que es compartible con ARCNET a 2.5 Mbits/seg. Ambas versiones pueden estar en la misma LAN. Fundamentalmente, cada nodo advierte de sus capacidades de transmision a otros nodos, de este modo si un modo rapido necesita comunicarse con uno lento, reduce su velocidad a la mas baja durante esa sesion ARCNET Plus soporta tamaños de paquetes mas grandes y ocho veces mas estaciones. Otra nueva caracteristica en la capacidad de conectar con redes Ethernet, anillo con testigo y Protocolo de control de transmision/Protocolo Internet (TCP/IP, Transmission Control Protocol/Internet Protocol) mediante el uso de puentes (bridges) y encaminadores (routers). Esto es posible porque la version nueva soporta la norma de control de enlace logico IEEE 802.2.

Arquitectura de Red Digital (DRA)

 Esta es una arquitectura de red distribuida de la Digital Equipment Corporation. Se le llama DECnet y consta de cinco capas. Las capas fisica, de control de enlace de datos, de transporte y de servicios de la red corresponden casi exactamente a las cuatro capas inferiores del modelo OSI. La quinta capa, la de aplicación, es una mezcla de las capas de presentacion y aplicación del modelo OSI. La DECnet no cuenta con una capa de sesion separada.
La DECnet, al igual que la ASR de IBM, define un marco general tanto para la red de comunicación de datos como para el procesamiento distribuido de datos. El objetivo de la DECnet es permitir la interconexion generalizada de diferentes computadoras principales y redes punto a punto, multipunto o conmutadas de manera tal que los usuarios puedan compartir programas, archivos de datos y dispositivos de terminal remotos.
La DECnet soporta la norma del protocolo internacional X.25 y cuenta con capacidades para conmutacion de paquetes. Se ofrece un emulador mediante el cual los sistemas de la Digital Equipment Corporation se pueden interconectar con las macrocomputadoras de IBM y correr en un ambiente ASR. El protocolo de mensaje para comunicación digital de datos (PMCDD) de la DECnet es un protocolo orientado a los bytes cuya estructura es similar a la del protocolo de Comunicación Binaria Sincrona (CBS) de IBM.

Arquitectura SRA


Con la ASR se describe una estructua integral que provee todos los modos de comunicacion de datos y con base en la cual se pueden planear e implementar nuevas redes de comunicacion de datos. La ASR se construyo en torno a cuatro pricipios basicos: Primero, la ASR comprende las funciones distribuidas con base en las cuales muchas responsabilildades de la red se puede mover de la computadora central a otros componentes de la red como son los concentradores remotos. Segundo, la ASR define trayectorias ante los usuarios finales (programas, dispositivos u operadores) de la red de comunicaion de datos en forma separada de los usuarios mismos, lo cual permite hacer extensiones o modificaciones a la configuracion de la red sin afectar al usuario final. Tercero, en la ASR se utiliza el principi de la independencia de dispositivo, lo cual permite la comunicacion de un programa con un dispositivo de entrada / salida sin importar los requrimientos de cualquier dispositivo unico. Esto tambien permite añadir o modificar programas de aplicacion y equipo de comunicacion sin afectar a otros elementos de la red de comunicacion. Cuarto, en la ASR se utilizan funciones y protocolos logicos y fisicos normalizado para la comunicacion de informacion entre dos puntos cualesquiera, y esto siginifca que se puede tener una arquitectura de proposito general y terminales industriales de muchas variedades y un solo protocolo de red.
La organizacion logica de una red AS, sin importar su configuracion fisica, se divide en dos grandes categorias de componentes: unidades direccionables de red y red de control de trayectoria.
La unidades de direccionables de red son grupos de componentes de ASR que proporcionan los servicios mediante los cuales el usuario final puede enviar datos a traves de la red y ayudan a los operadores de la red a realizar el control de esta y las funciones de administracion.
La red de control de trayectoria provee el control de enrutamiento y flujo; el principal servicio que proporciona la capa de control del enlace de datos dentro de la red de control de trayectoria es la transmision de datos por enlaces individuales.
La red de control de trayectoria tiene dos capas: la capa de control de trayectoria y la capa de control de enlace de datos. El control de enrutamiento y de flujo son los principales servicios proporcionados por la capa de control de trayectoria, mientras que la transmision de datos por enlaces individuales es el principal servicio que proporciona la capa de control de enlace de datoss
Una red de comunicacion de datos construida con base en los conceptos ARS consta de lo siguiente.
  • Computadora principal
  • Procesador de comunicacion de entrada (nodo intermedio)
  • Controlador remoto inteligente (nodo intermedio o nodo de frontera)
  • Diversar terminales de proposito general y orientadas a la industria (nodo terminal o nodo de gruupo)
  • Posiblemente redes de are local o enlaces de microcomputadora o macrocomputadora.

Modelo OSI




 Modelo OSI
El modelo OSI surge como una búsqueda de solución al problema de incompatibilidad de las redes de los años 60. Fue desarrollado por la ISO (International Organization for Standardization) en 1977 y adoptado por UIT-T.

Consiste de una serie de niveles que contienen las normas funcionales que cada nodo debe seguir en la Red para el intercambio de información y la ínter- operabilidad de los sistemas independientemente de suplidores o sistemas. Cada nivel del OSI es un modulo independiente que provee un servicio para el nivel superior dentro de la Arquitectura o modelo.
El Modelo OSI se compone de los siete niveles o capas correspondientes:

Nivel Físico
Es el nivel o capa encargada del control del transporte físico de la información entre dos puntos. Define características funcionales, eléctricas y mecánicas tales como:
  • Establecer, mantener y liberar las conexiones punto a punto y multipunto.
  • Tipo de transmisión asincrónica o sincronía
  • Modo de operación simplex, half-duplex, full dúplex.
  • Velocidad de transmisión.
  • Niveles de voltaje.
  • Distribución de pines en el conector y sus dimensiones.
En este nivel se definen las interfaces, módem, equipos terminales de línea, etc. También son representativas de este nivel las recomendaciones del UIT-T, serie V para módem, interfaz V.24 no su equivalente RS-232C, las interfaces de alta velocidad V.35 o RS 449, las interfaces para redes de datos X.21 o las recomendaciones I.431 para RDSI.
Nivel de Enlace
Define la técnica o procedimiento de transmisión de la información a nivel de bloques de bits, o sea, la forma como establecer, mantener y liberar un enlace de datos ( en el caso del nivel 1 se refiere al circuito de datos), provee control del flujo de datos, crea y reconoce las delimitaciones de Trama.
Son representativos de este nivel los procedimientos o protocolos:
  • BSC (Binary Synchronous Communication)
  • HDLC (High Level Data Link Control)
  • SDLC (Synchronous Data Link Control)
  • DDCMP (Digital Data Communication Message Protocol)
La función mas importante de esta capa es la referida al control de errores en la transmisión entre dos puntos, proporcionando una transmisión libre de error sobre el medio físico lo que permite al nivel próximo mas alto asumir una transmisión virtualmente libre de errores sobre el enlace. Esta función esta dividida en dos tareas: detección y corrección de errores, entre la cual destaca la detección de errores por el método de chequeo de redundancia cíclica (CRC) y el método de corrección por retransmisión.
Nivel de Red
Destinado a definir el enrutamiento de datos en la red, así como la secuencial correcta de los mensajes. En este nivel se define la vía mas adecuada dentro de la red para establecer una comunicación ya que interviene en el enrutamiento y la congestión de las diferentes rutas.
Función importante de este nivel o capa es la normalización del sistema de señalización y sistema de numeraciones de terminales, elementos básicos en una red conmutada. En caso necesario provee funciones de contabilidad para fines de información de cobro.
Traduce direcciones lógicas o nombres en direcciones físicas. En un enlace punto a punto el nivel 3 es una función nula, o sea existe pero transfiere todos los servicios del nivel 2 al 4.
En el nivel 3 es representativa la recomendación X.25 del CCITT, que define el protocolo de intercambio de mensajes en el modo paquete.
Nivel de Transporte
En este nivel o capa se manejan los parámetros que definen la comunicación de extremo a extremo en la red:
  • Asegura que los datos sean transmitidos libre de errores, en secuencia, y sin duplicación o perdida.
  • Provee una transmisión segura de los mensajes entre Host y Host a través de la red de la misma forma que el Nivel de Enlace la asegura entre nodos adyacentes.
  • Provee control de flujo extremo a extremo y manejo a extremo.
  • Segmenta los mensajes en pequeños paquetes para transmitirlos y los reensambla en el host destino.
Nivel de Sesión
Es la encargada de la organización y sincronización del dialogo entre terminales. Aquí se decide por ejemplo, cual estación debe enviar comandos de inicio de la comunicación, o quien debe reiniciar si la comunicación se ha interrumpido. En general control la conexión lógica (no física ni de enlace).
Es importante en este nivel la sincronización y resincronizacion de tal manera que el estado asumido en la sesión de comunicación sea coherente en ambas estaciones. También, se encarga de la traducción entre nombres y base de datos de direcciones.
Nivel de Presentación
Este nivel o capa es el encargado de la representación y manipulación de estructuras de datos. Establece la sintaxis (o forma) en que los datos son intercambiados. Representativos de este nivel son el terminal virtual (VM: Virtual Machine), formateo de datos , compresión de información, encriptamiento, etc.
Nivel de Aplicación
En este nivel el usuario ejecuta sus aplicaciones. Ejemplo de este nivel son las bases de datos distribuidas en lo referente a su soporte.
Se distinguen dos categorías: servicios que usan el modo conexión para operar en tiempo real y aquellos que usan modos de conexión retardados (no en tiempo real).
Algunas aplicaciones de este nivel son:
  • Correo electrónico según recomendación X.400 de CCITT.
  • Servicios interactivos, tales como transacciones bancarias, interrogación de bases de datos, procesamiento en tiempo compartido.
  • Servicio teletex, en particular la transferencia de documentos según recomendación T60, T61 y T62 de CCITT.
2.3.6 Modelo SNA
El modelo SNA tiene las siguientes características:
  • Permite compartir recursos
  • Reconoce perdida de datos durante la transmisión, usa procedimientos de control de flujo, evade sobrecarga y la congestión, reconoce fallos y hace corrección de errores.
  • Provee interfaces abiertas documentadas.
  • Simplifica la determinación de problemas gracias a los servicios de administración de la red.
  • Mantiene una arquitectura abierta.
  • Provee facilidad de interconexión de redes
  • Provee seguridad a través de rutinas de logon y facilidades de encryptamiento
  • Usa Synchronous Data Link Control (SDLC)
Niveles del Modelo SNA
Nivele de Control del Enlace Físico
El enlace físico de control de capas es la capa o nivel mas baja en la arquitectura. Este permite el uso de una variedad realistica de medios físicos par la interconexión de procedimientos de control. Procedimientos de protocolos típicos para esta capa o nivel son conexiones físicas provistas por líneas de comunicación, módem y la interfaces EIA RS-232C. Esta capa o nivel no tan solo permite variar tipos de circuitos punto a punto o multipunto, sino que provee los protocolos físicos para establecer, controlar y liberar los circuitos de datas conmutados.
Nivel de Enlace de Datos
Los medios de comunicación físicos (ej.: Línea telefónica) requieren técnicas especificas para ser usadas con el fin de transmitir dato entre sistemas a pesar de la naturaleza de tendencia de error de las facilidades físicas. Estas técnicas especificas son usadas en los procedimientos de control de enlace de dato. Las características primarias de la capa o nivel de enlace de Data de IBM SNA es que esta usa Control de Enlace de Data Sincrono ( Synchronous Data Link Control - SDLC) como el protocolo de línea de comunicación.
Nivel de Control de Ruta
Este nivel provee rutas virtualmente libre de errores entre los ultimo orígenes y destinos conectados a la red. Sobre todo el control de la red abarca o agrupa el establecimiento y manejo de estas rutas a través de la red.
El control de sendas o rutas (paths) por lo tanto tiende dos funciones primarias:




  • Enrutar mensajes a través de la red desde el origen hacia las localidades de destino.
  • Segmentar grandes mensajes o combinar pequeños mensajes, llamado segmentar en bloques (blocking), con el propósito de un caudal de transferencia mas eficiente a través de la red.

  • Nivel de Control de Transmisión
    Provee un control básico de los recursos de transmisión de la red. Las funciones que provee son:
    • Numero de verificación de secuencia cuando se recibe un mensaje
    • Encriptamento de datos
    • Administración de la rapidez en que los requerimientos enviados de una unidad lógica son recibidos en otra unidad lógica.
    • Soporte para las funciones de frontera para nodos periféricos
    Nivel de Control de Flujo de Datos
    El flujo de datos en una sesión LU-LU necesita ser controlado de acuerdo a los protocolos de sesión usados y este nivel provee ese control. Las funciones que provee este nivel son:
    • Asignación de números de secuencia de flujo de datos
    • Correlación de la petición y respuesta
    • Soporte para protocolos encadenados gracias a que hace agrupamiento en cadenas de las unidades relacionadas de petición
    • Soporte y refuerzo de la petición de sesión y protocolos de modo de respuesta
    • Soporte y coordinación de los modos de transmisión y recepción de los protocolos de sesión
    Nivel de Servicio de Presentación
    Los programas de transacciones se comunican unos con otros, de acuerdo con lo bien definidos protocolos de conversación, usando verbos de conversación. Este nivel define estos protocolos para comunicaciones de programa a programa de comunicación. También, controla el uso del nivel de verbos de los programas de transacciones.
    • Controla la carga y el inicio de los programas de transacción
    • Mantiene y soporta los modos de transmisión y recepción de protocolos de conversación
    • Supervisa el uso de los parámetros de los verbos de los programas de transacción
    • Refuerza las restricciones de los protocolos de secuencia
    • Procesa verbos de programas de transacciones
    Nivel de Servicios de Transacción
    Es el nivel en el que los programas de servicios de transacción son implementados. Provee los siguientes servicios de usuario final:
    • Control operativo del imite de sesión LU-LU
    • Arquitectura de Intercambio de Documentos (DIA) para distribución de documentos entre sistemas de información de oficina basados en SNA
    • Servicios Distribuidos SNA (SNADS) para comunicación asincronica de datos.

    ARQUITECTURA DE RED

    Arquitectura de la Red es el diseño de una red de comunicaciones. Es un marco para la especificación de los componentes físicos de una red y de su organización funcional y configuración, sus procedimientos y principios operacionales, así como los formatos de los datos utilizados en su funcionamiento.
    En la telecomunicación, la especificación de una arquitectura de red puede incluir también una descripción detallada de los productos y servicios entregados a través de una red de comunicaciones, y así como la tasa de facturación detallada y estructuras en las que se compensan los servicios.
    La arquitectura de red de internet se expresa de forma predominante por el uso de la Familia de Protocolos de Internet, en lugar de un modelo específico para la interconexión de redes o nodos en la red, o el uso de tipos específicos de enlaces de hardware.

    Actualmente una buena arquitectura de red debe cumplir 4 características básicas:
    • Tolerancia a fallos
    • Escalabilidad
    • calidad del servicio
    • Seguridad

    • Arquitectura SRA

    Arquitectura de Red Digital (DRA)

    •Arcnet

    • Ethernet

    •Modelo OSI



    Modelos topológicos

    Hay dos modelos topológicos populares: la LAN / MAN / WAN y acceso /Distribución / modelos core. La LAN / MAN / WAN modelo arquitectónico es simple e intuitivo y se basa en la separación geográfica y / o topológica de redes. Su característica importante es que, al concentrarse en LAN / MAN / WAN límites, se centra en las características y necesidades de los límites y en las funciones de compartimentalización, servicio, desempeño y características de la red a lo largo de esos límites. Descripciones de control de la interfaz, o CDI, son útiles en la gestión del desarrollo de este modelo arquitectónico. El modelo arquitectónico de acceso / distribución / Core tiene algunas similitudes y diferencias de la LAN / MAN / WAN modelo. Es similar a la LAN / MAN / WAN modelo en el que se compartimenta algunas funciones, servicios, prestaciones y características de la red , aunque no hasta el grado de la LAN / MAN / WAN modelo .El acceso / distribución / modelo básico , sin embargo , se centra en la función en lugar de ubicación. Una característica de este modelo que es importante es que se puede utilizar para reflejar el comportamiento de la red en su acceso, áreas de distribución, y el núcleo. Tanto la LAN / MAN / WAN y acceso / distribución / modelos Core se utilizan como puntos de partida en la arquitectura de red, ya que ambos son intuitiva y fácil de aplicar .Pueden ser restrictiva. La LAN / MAN / WAN y el modelo de acceso / distribución / modelo Core indican además el grado de jerarquía prevista para la red.

    Modelos basados en el flujo

    Los modelos basados en el flujo que presentamos son punto a punto, cliente-servidor, jerárquica cliente-servidor, y la computación distribuida. El punto a punto modelo arquitectónico se basa en el modelo de flujo de punto a punto. Donde los usuarios y las aplicaciones son bastante coherentes en sus comportamientos de flujo a lo largo de la red . Las características importantes de este modelo son en las características arquitectónicas, flujos, de funciones, características y servicios. Dado que los usuarios y las aplicaciones en este modelo son consistentes en toda la red, no hay lugares obvios para las características arquitectónicas. Esto empuja a las funciones, características, y los servicios hacia el borde de la red, cerca de los usuarios y sus dispositivos, y también hace que los flujos de extremo a extremo, entre los usuarios y sus dispositivos.

    Modelos Funcionales

    Los modelos funcionales se centran en el apoyo a determinadas funciones de la red. En esta sección presentamos proveedores de servicio , intranet / extranet , solo /modelos de rendimiento de varios niveles y de extremo a extremo . El modelo de proveedores de servicios se basa en las funciones de proveedores de servicios , centrándose en la privacidad y la seguridad , la prestación de servicios a los clientes ( usuarios) , y la facturación. El modelo intranet / extranet se centra en la seguridad y la privacidad, incluyendo la separación de los usuarios, los dispositivos y las aplicaciones basadas en un acceso seguro. Tenga en cuenta que en este modelo no puede haber varios niveles de la jerarquía.
    El modelo rendimiento de varios niveles se centra en la identificación de las redes o partes de una red como tener un solo nivel de rendimiento, múltiples niveles de rendimiento, o que tiene componentes de ambos. Este modelo se basa en los resultados de los requisitos y análisis de flujo, donde un solo y el rendimiento de varios niveles se determina. Recordemos que para el desempeño de múltiples niveles , múltiples aplicaciones , dispositivos y usuarios pueden impulsar la arquitectura y el diseño de la red , en términos de rendimiento, mientras que el rendimiento de un solo nivel se centra en el apoyo (por lo general la mayoría de aplicaciones) , los dispositivos y los usuarios que tienen un conjunto coherente de rendimiento requisitos . Estos tienen dos conjuntos muy diferentes de los requisitos arquitectónicos. El modelo de arquitectura de extremo a extremo se centra en todos los componentes en la -ruta final de un flujo de tráfico. Este modelo está más estrechamente alineado con la basada en el flujo de perspectiva de la creación de redes. Modelos funcionales son los más difíciles de aplicar a una red, en la que debe comprender dónde se encuentra cada función.



    CLASES DE REDES

    Dirección IP Clase A, B, C, D y E

    Si tenemos la dirección IP Clase C 192.168.1.0/24 y la pasamos a binario Los primeros 3 octetos, que coinciden con los bits “1” de la máscara de red (fondo bordó), es la dirección de red, que va a ser común a todos los hosts que sean asignados en el último octeto (fondo gris). Con este mismo criterio, si tenemos una 
    Es una etiqueta numérica que identifica, de manera lógica y jerárquica, a un interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la que es un identificador de 48bits para identificar de forma única a la y no depende del protocolo de conexión utilizado ni de la red.

    Existen 5 tipos de clases de IP más ciertas direcciones especiales:
    Red por defecto (default) - La dirección IP de 0.0.0.0 se utiliza para la red por defecto.

    Clase A - Esta clase es para las redes muy grandes, tales como las de una gran compañía internacional. Del IP con un primer octeto a partir de 1 al 126 son parte de esta clase. Los otros tres octetos son usados para identificar cada anfitrión. Esto significa que hay 126 redes de la clase A con 16,777,214 (224 -2) posibles anfitriones para un total de 2,147,483,648 (231) direcciones únicas del IP. Las redes de la clase A totalizan la mitad de las direcciones disponibles totales del IP.
    En redes de la clase A, el valor del bit *(el primer número binario) en el primer octeto es siempre 0.

    Loopback - La dirección IP 127.0.0.1 se utiliza como la dirección del loopback. Esto significa que es utilizada por el ordenador huésped para enviar un mensaje de nuevo a sí mismo. Se utiliza comúnmente para localizar averías y pruebas de la red.

    Clase B - La clase B se utiliza para las redes de tamaño mediano. Un buen ejemplo es un campus grande de la universidad. Las direcciones del IP con un primer octeto a partir del 128 a1 191 son parte de esta clase. Las direcciones de la clase B también incluyen el segundo octeto como parte del identificador neto. Utilizan a los otros dos octetos para identificar cada anfitrión(host). Esto significa que hay 16,384 (214) redes de la clase B con 65,534 (216 -2) anfitriones posibles cada uno para un total de 1,073,741,824 (230) direcciones únicas del IP. Las redes de la clase B totalizan un cuarto de las direcciones disponibles totales del IP y tienen un primer bit con valor de 1 y un segundo bit con valor de 0 en el primer octeto.

    Clase C - Las direcciones de la clase C se utilizan comúnmente para los negocios pequeños a mediados de tamaño. Las direcciones del IP con un primer octeto a partir del 192 al 223 son parte de esta clase. Las direcciones de la clase C también incluyen a segundos y terceros octetos como parte del identificador neto. Utilizan al último octeto para identificar cada anfitrión. Esto significa que hay 2,097,152 (221) redes de la clase C con 254 (28 -2) anfitriones posibles cada uno para un total de 536,870,912 (229) direcciones únicas del IP. Las redes de la clase C totalizan un octavo de las direcciones disponibles totales del IP. Las redes de la clase C tienen un primer bit con valor de 1, segundo bit con valor de 1 y de un tercer bit con valor de 0 en el primer octeto.

    Clase D - Utilizado para los multicast, la clase D es levemente diferente de las primeras tres clases. Tiene un primer bit con valor de 1, segundo bit con valor de 1, tercer bit con valor de 1 y cuarto bit con valor de 0. Los otros 28 bits se utilizan para identificar el grupo de computadoras al que el mensaje del multicast esta dirigido. La clase D totaliza 1/16ava (268,435,456 o 228) de las direcciones disponibles del IP.

    Clase E - La clase E se utiliza para propósitos experimentales solamente. Como la clase D, es diferente de las primeras tres clases. Tiene un primer bit con valor de 1, segundo bit con valor de 1, tercer bit con valor de 1 y cuarto bit con valor de 1. Los otros 28 bits se utilizan para identificar el grupo de computadoras que el mensaje del multicast esta dirigido. La clase E totaliza 1/16ava (268,435,456 o 228) de las direcciones disponibles del IP.

    Broadcast - Los mensajes que se dirigen a todas las computadoras en una red se envían como broadcast. Estos mensajes utilizan siempre La dirección IP 255.255.255.255.

    Máscara de Red

    La máscara de red es una combinación de bits que sirve para delimitar el ámbito de una red de computadoras. Su función es indicar a los dispositivos qué parte de la dirección IPes el número de la red, incluyendo la subred, y qué parte es la correspondiente al host.

    Ejemplo 

    8bit x 4 octetos = 32 bit. (11111111.11111111.11111111.11111111 = 255.255.255.255)
    8bit x 3 octetos = 24 bit. (11111111.11111111.11111111.00000000 = 255.255.255.0)
    8bit x 2 octetos = 16 bit. (11111111.11111111.00000000.00000000 = 255.255.0.0)
    8bit x 1 octetos = 8 bit. (11111111.00000000.00000000.00000000 = 255.0.0.0)

    En el ejemplo 10.0.0.0/8, según lo explicado anteriormente, indicaría que la máscara de red es 255.0.0.0
    Las máscaras de redes , se utilizan como validación de direcciones realizando una operación AND lógica entre la dirección IP y la máscara para validar al equipo, lo cual permite realizar una verificación de la dirección de la Red y con un OR y la máscara negada se obtiene la dirección del broadcasting.



    Porción de Host
    La cantidad de bits "0" en la porción de host de la máscara, indican que parte de la dirección de red se usa para asignar direcciones de host, es decir, la parte de la dirección IP que va a variar según se vayan asignando direcciones a los hosts. 

    dirección Clase B, los 2 primeros octetos son la dirección de red que va a ser común a todos los hosts que sean asignados en los últimos 2 octetos, y si tenemos una dirección Clase A, el 1 octeto es la dirección de red que va a ser común a todos los hosts que sean asignados en los últimos 3 octetos. 

    Ahora, si en vez de tener una dirección con Clase tenemos una ya subneteada, por ejemplo la 132.18.0.0/22, la situación es más compleja.

    En este caso los 2 primeros octetos de la dirección IP, ya que los 2 primeros octetos de la máscara de red tienen todos bits “1” (fondo bordo), es la dirección de red y va a ser común a todas las subredes y hosts. Como el 3º octeto está divido en 2, una parte en la porción de red y otra en la de host, la parte de la dirección IP que corresponde a la porción de red (fondo negro), que tienen en la máscara de red los bits “1”, se va a ir modificando según se vayan asignando las subredes y solo va a ser común a los host que son parte de esa subred. Los 2 bits “0” del 3º octeto en la porción de host (fondo gris) y todo el último octeto de la dirección IP, van a ser utilizados para asignar direcciones de host. 


    Convertir Bits en Números Decimales

    Como sería casi imposible trabajar con direcciones de 32 bits, es necesario convertirlas en números decimales. En el proceso de conversión cada bit de un intervalo (8 bits) de una dirección IP, en caso de ser "1" tiene un valor de "2" elevado a la posición que ocupa ese bit en el octeto y luego se suman los resultados. Explicado parece medio engorroso pero con la tabla y los ejemplos se va a entender mejor.